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Design Insights for MapReduce from Diverse Production Workloads

Yanpei Chen, Sara Alspaugh, Randy Katz
University of California, Berkeley

Abstract

In this paper, we analyze seven MapReduce work-
load traces from production clusters at Facebook and
at Cloudera customers in e-commerce, telecommunica-
tions, media, and retail. Cumulatively, these traces com-
prise over a year’s worth of data logged from over 5000
machines, and contain over two million jobs that perform
1.6 exabytes of I/O. Key observations include input data
forms up to 77% of all bytes, 90% of jobs access KB
to GB sized files that make up less than 16% of stored
bytes, up to 60% of jobs re-access data that has been
touched within the past 6 hours, peak-to-median job sub-
mission rates are 9:1 or greater, an average of 68% of all
compute time is spent in map, task-seconds-per-byte is
a key metric for balancing compute and data bandwidth,
task durations range from seconds to hours, and five out
of seven workloads contain map-only jobs. We have also
deployed a public workload repository with workload re-
play tools so that the researchers can systematically as-
sess design priorities and compare performance across
diverse MapReduce workloads.

1 Introduction

The MapReduce computing paradigm is gaining
widespread adoption across diverse industries as a plat-
form for large-scale data analysis, accelerated by open-
source implementations such as Apache Hadoop. The
scale of such systems and the depth of their software
stacks create complex challenges for the design and oper-
ation of MapReduce clusters. A number of recent studies
looked at MapReduce style systems within a handful of
large technology companies [19, 8, 39, 33, 30, 10]. The
stand-alone data sets used in these means that the associ-
ated design insights may not generalize across use cases,
an important concern given the emergence of MapRe-
duce users in different industries [5]. Consequently, there
is a need to develop systematic knowledge of MapRe-
duce behavior at both established users within technol-
ogy companies, and at recent adopters in other industries.

In this paper, we analyze seven MapReduce work-
load traces from production clusters at Facebook and at
Cloudera’s customers in e-commerce, telecommunica-
tions, media, and retail. Cumulatively, these traces com-
prise over a year’s worth of data, covering over two mil-

lion jobs that moved approximately 1.6 exabytes spread
over 5000 machines (Table 3). They are collected using
standard tools in Hadoop, and facilitate comparison both
across workloads and over time.

Our analysis reveals a range of workload behavior.
Key similarities between workloads include input data
forms up to 77% of all bytes, 90% of jobs access KB
to GB sized files that make up less than 16% of stored
bytes, up to 60% of jobs re-access data that has been
touched within the past 6 hours, peak-to-median job sub-
mission rates are 9:1 or greater, an average of 68% of all
compute time is spend in map, task durations range from
seconds to hours, and five out of seven workloads contain
map-only jobs. Key differences include the frequency of
data re-access, the burstiness of the workload, the bal-
ance between computation to data bandwidth, the ana-
lytical frameworks used on top of MapReduce, and the
multi-dimension descriptions of common job categories.
These results provide empirical evidence to inform the
design and evaluation of schedulers, caches, optimizers,
and networks, in addition to revealing insights for cluster
provisioning, benchmarking, and workload monitoring.

Table 1 summarizes our findings and serves as a
roadmap for the rest of the paper. Our methodology ex-
tends [19, 18, 17], and organizes the analysis according
to three conceptual aspects of a MapReduce workload:
data, temporal, and compute patterns. Section 3 looks
at data patterns. This includes aggregate bytes in the
MapReduce input, shuffle, and output stages, the distri-
bution of per-job data sizes, and the per-file access fre-
quencies and intervals. Section 4 focuses on temporal
patterns. It analyzes variation over time across multiple
workload dimensions, quantifies burstiness, and extracts
temporal correlations between different workload dimen-
sions. Section 5 examines computate patterns. It ana-
lyzes the balance between aggregate compute and data
size, the distribution of task sizes, and the breakdown of
common job categories both by job names and by multi-
dimensional job behavior. Our contributions are:
• Analysis of seven MapReduce production workloads

from five industries totaling over two million jobs,
• Derivation of design and operational insights, and
• Methodology of analysis and the deployment of a pub-

lic workload repository with workload replay tools.
We invite other MapReduce researchers and users to add
to our workload repository and derive additional insights
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Section Observations Implications/Interpretations
3.1 Input data forms 51-77% of all bytes, shuffle 8-35%, output 8-23%. Need to re-assess sole focus on shuffle-like traffic for datacenter networks.
3.2 The majority of job input sizes are MB-GB. TB-scale benchmarks such as TeraSort are not representative.
3.2 For the Facebook workload, over a year, input and shuffle sizes increase

by over 1000× but output size decreases by roughly 10×.
Growing customers and raw data size over time, distilled into possibly the
same set of metrics.

3.3 For all workloads, data accesses follow the same Zipf distribution. Tiered storage is beneficial. Uncertain cause for the common patterns.
3.3 90% of jobs access small files that make up 1-16% of stored bytes. Cache data if file size is below a threshold.
3.3 Up to 78% of jobs read input data that is recently read or written by other

jobs. 75% of re-accesses occur within 6 hrs.
LRU or threshold-based cache eviction viable. Tradeoffs between eviction
policies need further investigation.

4.1 There is a high amount of noise in job submit patterns in all workloads. Online prediction of data and computation needs will be challenging.
4.1 Daily diurnal pattern evident in some workloads. Human driven interactive analysis, and/or daily automated computation.
4.2 Workloads are bursty, with peak to median hourly job submit rates of 9:1

or greater.
Scheduling and placement optimizations essential under high load. In-
crease utilization or conserve energy during inherent workload troughs.

4.2 For Facebook, over a year, peak to median job submit rates decrease from
31:1 to 9:1, while more internal organizations use MapReduce.

Multiplexing many workloads help smooth out bustiness. However, uti-
lization remains low.

4.2 Workload intensity is multi-dimensional (jobs, I/O, task-times, etc.). Need multi-dim. metrics for burstiness and other time series properties.
4.3 Avg. temporal correlation between job submit & data size is 0.21; for job

submit & compute time it is 0.14; for data size & compute time it is 0.62.
Schedulers need to consider metrics beyond number of active jobs.
MapReduce workloads remain data- rather than compute-centric.

5.1 Workloads on avg. spend 68% of time in map, 32% of time in reduce. Optimizing read latency/locality should be a priority.
5.1 Most workloads have task-seconds per byte of 1×10−7 to 7×10−7; one

workload has task-seconds per byte of 9×10−4.
Build balanced systems for each workload according to task-seconds per
byte. Develop benchmarks to probe a given value of task-seconds per byte.

5.2 For all workloads, task durations range from seconds to hours. Need mechanisms to choose uniform task sizes across jobs.
5.3.1 <10 job name types make up >60% of all bytes or all compute time. Per-job-type prediction and manual tuning are possible.
5.3.1 All workloads are dominated by a 2-3 frameworks. Meta-schedulers need to multiplex only a few frameworks.
5.3.2 Jobs touching <10GB of total data make up >92% of all jobs, and often

have <10 tasks or even a single tasks.
Schedulers should design for small jobs. Re-assess the priority placed on
addressing task stragglers.

5.3.2 Five out of seven workloads contain map-only jobs. Not all jobs benefit from network optimizations for shuffle.
5.3.2 Common job types change significantly over a year. Periodic re-tuning and re-optimizations is necessary.

Table 1: Summary of observations from the workload, and associated design implications and interpretations.

using the data in this paper. We hope that such public
data will allow researchers and cluster operators to better
understand and optimize MapReduce systems.

2 Background

This section reviews key previous work on workload
characterization in general and highlight our advances.
In addition, we describe the traces we used.

2.1 Prior Work
The desire for thorough system measurement predates
the rise of MapReduce. Workload characterization stud-
ies have been invaluable in helping designers identify
problems, analyze causes, and evaluate solutions. Ta-
ble 2 summarizes some studies founded on the under-
standing realistic system behavior. They fall into the
categories of network systems [29, 34, 36, 16, 24, 8],
storage systems [35, 16, 32, 13, 19, 10], and large scale
data centers running computation paradigms including
MapReduce [8, 39, 33, 10, 30, 11]. Network and storage
subsystems are key components for MapReduce. This
paper builds on these studies.

A striking trend emerges when we order the stud-
ies by trace date. In the late 1980s and early 1990s,
measurement studies often capture system behavior for
only one setting [35, 29]. The stand-alone nature of
these studies are due to the emerging measurement tools
that created considerable logistical and analytical chal-
lenges at the time. Studies in the 1990s and early
2000s often traced the same system under multiple use

cases [34, 36, 16, 32, 13, 24]. The increased generality
likely comes from a combination of improved measure-
ment tools, wide adoption of certain systems, and better
appreciation of what good system measurement enables.

The trend reversed in recent years, with stand-alone
studies becoming common again [19, 8, 39, 33, 10, 30].
This is likely due to the tremendous scale of the sys-
tems of interest. Only a few organizations can afford sys-
tems of thousands or even millions of machines. Concur-
rently, the vast improvement in measurement tools create
an over-abundance of data, presenting new challenges to
derive useful insights from the deluge of trace data.

These technology trends create the pressing need to
generalize beyond the initial point studies. As MapRe-
duce use diversifies to many industries, system designers
need to optimize for common behavior [11], in addition
to improving the particulars of individual use cases.

Some studies amplified their breadth by working with
ISPs [36, 24] or enterprise storage vendors [13], i.e., in-
termediaries who interact with a large number of end cus-
tomers. The emergence of enterprise MapReduce ven-
dors present us with similar opportunities to generalize
beyond single-point MapReduce studies.

2.2 Workload Traces Overview

We analyze seven workloads from various Hadoop de-
ployments. All seven come from clusters that sup-
port business critical processes. Five are workloads
from Cloudera’s enterprise customers in e-commerce,
telecommunications, media, and retail. Two others are
Facebook workloads on the same cluster across two dif-
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Study Traced system Trace date Companies Industries Findings & contributions
Ousterhout et al. [35] BSD file system 1985 1 1 Various findings re bandwidth & access patterns

Leland et al. [29] Ethernet packets 1989-92 1 1 Ethernet traffic exhibits self-similarity
Mogul [34] HTTP requests 1994 2 2 Persistent connections are vital for HTTP
Paxson [36] Internet traffic 1994-95 35 >3 Various findings re packet loss, re-ordering, & delay

Breslau et al. [16] Web caches 1996-98 6 2 Web caches see various Zipf access patterns
Mesnier et al. [32] NFS 2001-04 2 1 Predict file properties based on name and attributes

Bairavasundaram et al. [13] Enterprise storage 2004-08 100s Many Quantifies silent data corruption in reliable storage
Feamster et al. [24] BGP configurations 2005 17 N/A Discovers BGP misconfigurations by static analysis

Chen et al. [19] Enterprise storage 2007 1 1 Various findings re placement, consolidation, caching
Alizadeh et al. [8] Datacenter TCP traffic 2009 1 1 Use explicit congestion notification to improve TCP

Thereska et al. [39] Storage for web apps 2009 1 1 Save energy by powering down data replicas
Mishra et al. [33] Web apps backend 2009 1 1 Task classification for capacity planning & scheduling

Anathanarayanan et al. [10] Web search (Dryad) 2009 1 1 Alleviate hotspots by pre-emptive data replication
Meisner et al. [30] Web search 2010 1 1 Interactive latency complicates hardware power mngmt.

Anathanarayanan et al. [11] Hadoop and Dryad 2009-11 3 1 Cache data based on heavy-tail access patterns

Table 2: Summary of prior work. The list includes network system studies [29, 34, 36, 16, 24, 8], storage system studies [35, 16,
32, 13, 19, 10], and studies on data centers running large scale computation paradigms including MapReduce [8, 39, 33, 10, 30, 11].
Note that studies in the 1990s and early 2000s have good breadth, while studies in the late 2000s returned to being stand-alone.

Trace Machines Length Date Jobs Bytes
moved

CC-a <100 1 month 2011 5759 80 TB
CC-b 300 9 days 2011 22974 600 TB
CC-c 700 1 month 2011 21030 18 PB
CC-d 400-500 2+ months 2011 13283 8 PB
CC-e 100 9 days 2011 10790 590 TB

FB-2009 600 6 months 2009 1129193 9.4 PB
FB-2010 3000 1.5 months 2010 1169184 1.5 EB

Total >5000 ≈ 1 year - 2372213 1.6 EB

Table 3: Summary of traces. CC is short for “Cloudera Cus-
tomer”. FB is short for “Facebook”. Bytes touched is computed
by sum of input, shuffle, and output data sizes for all jobs.

ferent years. These workloads offer a rare opportunity to
survey Hadoop use cases across several technology and
traditional industries (Cloudera customers), and track the
growth of a leading Hadoop deployment (Facebook).

Table 3 gives some detail about these workloads.
The trace lengths are limited by the logistical chal-
lenges of shipping trace data for offsite analysis. The
Cloudera customer workloads have raw logs approach-
ing 100GB, requiring us to set up specialized file transfer
tools. Transferring raw logs is infeasible for the Face-
book workloads, requiring us to query Facebook’s inter-
nal monitoring tools. Combined, the workloads contain
over a year’s worth of trace data, covering a non-trivial
amount of jobs and bytes processed by the clusters.

The data is logged by standard tools in Hadoop; no
additional tracing tools were necessary. The workload
traces contain per-job statistics for job ID (numerical
key), job name (string), input/shuffle/output data sizes
(bytes), duration, submit time, map/reduce task time
(slot-seconds), map/reduce task counts, and input/output
file paths. We call each of these characteristic a numer-
ical dimension of a job. Some traces have some data di-
mensions unavailable.

We obtained the Cloudera traces by doing a time-range
selection of per-job Hadoop history logs based on the file
timestamp. The Facebook traces come from a similar
query on Facebook’s internal log database. The traces
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Figure 1: Aggregate fraction of all bytes that come from input,
shuffle, or output of each workload.

reflect no logging interruptions, except for the cluster in
CC-d, which was taken offline several times due to op-
erational reasons. There are some inaccuracies at trace
start and termination, due to incomplete jobs at the trace
boundaries. The length of our traces far exceeds the typ-
ical job length on these systems, leading to negligible
errors. To capture weekly behavior for CC-b and CC-e,
we intentionally queried for 9 days of data to allow for
inaccuracies at trace boundaries.

3 Data Access Patterns

Data movement is a key function of these clusters, so un-
derstanding data access patterns is crucial. This section
looks at data patterns in aggregate (§ 3.1), by jobs (§ 3.2),
and per-file (§ 3.3).

3.1 Aggregate input/shuffle/output sizes

Figure 1 shows the aggregate input, shuffle, and output
bytes. These statistics reflect I/O bytes seen from the
MapReduce API. Different MapReduce environments
lead to two interpretations with regard to actual bytes
moved in hardware.

If we assume that task placement is random, and lo-
cality is negligible for all three input, shuffle, and output
stages, then all three MapReduce data movement stages
involve network traffic. Further, because task placement
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Figure 2: Data size for each workload. Showing input, shuffle,
and output size per job.

is random, the aggregate traffic looks like N-to-N shuf-
fle traffic for all three stages. Under these assumptions,
recent research correctly optimize for N-to-N traffic pat-
terns for datacenter networks [7, 8, 25, 20].

However, the default behavior in Hadoop is to at-
tempt to place map tasks for increased locality of input
data. Hadoop also tries to combine or compress map
outputs and optimize placement for reduce tasks to in-
crease rack locality for shuffle. By default, for every
API output block, HDFS stores one copy locally, an-
other within-rack, and a third cross-rack. Under these
assumptions, data movement would be dominated by in-
put reads, with read locality optimizations being worth-
while [41]. Further, while inter-rack traffic from shuffle
can be decreased by reduce task placement, HDFS output
by design produces cross-rack replication traffic, which
has yet to be optimized.

Facebook uses HDFS RAID, which employs Reed-
Solomon erasure codes to tolerate 4 missing blocks with
1.4× storage cost [15, 37]. Parity blocks are placed in
a non-random fashion. Combined with efforts to im-
prove locality, the design creates another environment in
which we need to reassess optimization priority between
MapReduce API input, shuffle, and output.

3.2 Per-job data sizes

Figure 2 shows the distribution of per-job input, shuf-
fle, and output data sizes for each workload. The median
per-job input, shuffle, and output size respective differ by
6, 8, and 4 orders of magnitude. Most jobs have input,
shuffle, and output sizes in the MB to GB range. Thus,
benchmarks of TB and above [6, 4] captures only a nar-
row set of input, shuffle, and output patterns.

From 2009 to 2010, the Facebook workloads’ per-job
input and shuffle size distributions shift right (become
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Figure 3: Log-log file access frequency vs. rank. Showing
Zipf distribution of same shape (slope) for all workloads.

larger) by several orders of magnitude, while the per-
job output size distribution shifts left (becomes smaller).
Raw and intermediate data sets have grown while the fi-
nal computation results have become smaller. One pos-
sible explanation is that Facebook’s customer base (raw
data) has grown, while the final metrics (output) to drive
business decisions have remained the same.

3.3 Access frequency and intervals

This section analyzes HDFS file access frequency and in-
tervals based on hashed file path names. The FB-2009

and CC-a traces do not contain path names, and the
FB-2010 trace contains path names for input only.

Figure 3 shows the distribution of HDFS file access
frequency, sorted by rank according to non-decreasing
frequency. Note that the distributions are graphed on
log-log axes, and form approximate straight lines. This
indicates that the file accesses follow a Zipf distribution.

The generalized Zipf distribution has the form in
Equation 1, where f (r;α,N) is the access frequency of
rth ranked file, N is the total size of the distribution,
i.e., number of unique files in the workload, and α is
the shape parameter of the distribution. Also, HN,α is
the Nth generalized harmonic number. Figure 3 graphs
log( f (r;α,N)) against log(r). Thus, a linear log-log
graph indicates a distribution of the form in Equation 1,
with N/HN,α being a vertical shift given by the size of
the distribution, and α reflects the slope of the line.

f (r;α,N) =
N

rα HN,α
HN,α =

N

∑
k=1

1
kα

(1)

Figure 3 indicates that few files account for a very high
number of accesses. Thus, any data caching policy that
includes those files will bring considerable benefit.

Further, the slope, i.e., α parameter of the distributions
are all approximately 5/6, across workloads and for both
inputs and outputs. Thus, file access patterns are Zipf
distributions of the same shape. Figure 3 suggests the
existence of common computation needs that leads to the
same file access behavior across different industries.

The above observations indicate only that caching
helps. If there is no correlation between file sizes and
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Figure 4: Access patterns vs. input/output file size. Showing
cummulative fraction of jobs with input/output files of a certain
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access frequencies, maintaining cache hit rates would re-
quire caching a fixed fraction of bytes stored. This design
is not sustainable, since caches intentionally trade ca-
pacity for performance, and cache capacity grows slower
than full data capacity. Fortunately, further analysis sug-
gests more viable caching policies.

Figure 4 shows data access patterns plotted against file
sizes. The distributions for fraction of jobs versus file
size vary widely (top graphs), but converge in the up-
per right corner. In particular, 90% of jobs access files
of less than a few GBs (note the log-scale axis). These
files account for up to only 16% of bytes stored (bot-
tom graphs). Thus, a viable cache policy would be to
cache files whose size is less than a threshold. This pol-
icy would allow cache capacity growth rates to be de-
tached from the growth rate in data.

Further analysis also suggest cache eviction policies.
Figure 5 indicates the distribution of time intervals be-
tween data re-accesses. 75% of the re-accesses take place
within 6 hours. Thus, a possible cache eviction policy
would be to evict entire files that have not been accessed
for longer than a workload specific threshold duration.

Figure 6 further shows that up to 78% of jobs involve
data re-accesses (CC-c, CC-d, CC-e), while for other
workloads, the fraction is lower. Thus, the same cache
eviction policy potentially translates to different benefits
for different workloads.

Future work should analyze file path semantics and hi-
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Figure 6: Fraction of jobs that reads pre-existing input path.
Note that output path information is missing from FB-2010.

erarchy to see if the small data sets are stand-alone or
samples of larger data sets. Frequent use of data samples
would suggest opportunities to pre-generate data samples
that preserve various kind of statistics. This analysis re-
quires proprietary file name information, and would be
possible within each MapReduce user’s organization.

4 Workload Variation Over Time

The intensity of a MapReduce workload depends on the
job submission rate, as well as the computation and data
access patterns of the jobs that are submitted. System
occupancy depends on the combination of these multiple
time-varying dimensions. This section looks at work-
load variation over a week (§ 4.1), quantifies burstiness,
a common feature for all workloads (§ 4.2), and com-
putes temporal correlations between different workload
dimensions (§ 4.3).

4.1 Weekly time series
Figure 7 depicts the time series of four dimensions
of workload behavior over a week. The first three
columns respectively represents the cumulative job
counts, amount of I/O (again counted from MapReduce
API), and computation time of the jobs submitted in that
hour. The last column shows cluster utilization, which
reflects how the cluster services the submitted workload
describes by the preceding columns, and depends on the
cluster hardware and execution environment.

The first feature to observe in the graphs of Figure 7
is that noise is high. This means that even though the
number of jobs submitted is known, it is challenging to
predict how many I/O and computation resources will be
needed as a result. Also, standard signal process methods
to quantify the signal to noise ratio would be challenging
to apply to these time series, since neither the signal nor
noise models are known.

Some workloads exhibit daily diurnal patterns, re-
vealed by Fourier analysis, and for some cases, visually
identifiable (e.g., jobs submission for FB-2010, utiliza-
tion for CC-e). In Section 6, we combine this observation
with several others to speculate that there is an emerging
class of interactive and semi-streaming workloads.
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Figure 7: Workload behavior over a week. From left to right: (1) Jobs submitted per hour. (2) Aggregate I/O (i.e., input + shuffle
+ output) size of jobs submitted. (3) Aggregate map and reduce task time in task-hours of jobs submitted. (4) Cluster utilization in
average active slots. From top row to bottom, showing CC-a, CC-b, CC-c, CC-d, CC-e, FB-2009, and FB-2010 workloads. Note
that for CC-c, CC-d, and FB-2009, the utilization data is not available from the traces. Also note that some time axes are misaligned
due to short, week-long trace lengths (CC-b and CC-e), or gaps from missing data in the trace (CC-d).

4.2 Burstiness

Another feature of Figure 7 is the bursty submission pat-
terns in all dimensions. Burstiness is an often discussed
property of time-varying signals, but it is not precisely
measured. A common metric is the peak-to-average ra-
tio. There are also domain-specific metrics, such as for
bursty packet loss on wireless links [38]. Here, we ex-
tend the concept of peak-to-average ratio to quantify a
key workload property: burstiness.

We start defining burstiness first by using the median
rather than the arithmetic mean as the measure of “aver-
age”. Median is statistically robust against data outliers,
i.e., extreme but rare bursts [26]. For two given work-
loads with the same median load, the one with higher
peaks, that is, a higher peak-to-median ratio, is more
bursty. We then observe that the peak-to-median ratio is

the same as the 100th-percentile-to-median ratio. While
the median is statistically robust to outliers, the 100th-
percentile is not. This implies that the 99th, 95th, or
90th-percentile should also be calculated. We extend this
line of thought and compute the general nth-percentile-
to-median ratio for a workload. We can graph this vector
of values, with nth−percentile

median on the x-axis, versus n on the
y-axis. The resultant graph can be interpreted as a cumu-
lative distribution of arrival rates per time unit, normal-
ized by the median arrival rate. This graph is an indica-
tion of how bursty the time series is. A more horizontal
line corresponds to a more bursty workload; a vertical
line represents a workload with a constant arrival rate.

Figure 8 graphs this metric for one of the dimensions
of our workloads. We also graph two different sinusoidal
signals to illustrate how common signals appear under
this burstiness metric. Figure 8 shows that for all work-
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Figure 8: Workload burstiness. Showing cummulative distri-
bution of task-time (sum of map time and reduce time) per hour.
To allow comparison between workloads, all values have been
normalized by the median task-time per hour for each work-
load. For comparison, we also show burstiness for artificial
sine submit patterns, scaled with min-max range the same as
mean (sine + 2) and 10% of mean (sine + 20).
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Figure 9: Correlation between different submission pattern
time series. Showing pair-wise correlation between jobs per
hour, (input + shuffle + output) bytes per hour, and (map + re-
duce) task times per hour.

loads, the highest and lowest submission rates are orders
of magnitude from the median rate. This indicates a level
of burstiness far above the workloads examined by prior
work, which have more regular diurnal patterns [39, 30].
For the workloads here, scheduling and task placement
policies will be essential under high load. Conversely,
mechanisms for conserving energy would be beneficial
during periods of low utilization.

For the Facebook workloads, over a year, the peak-
to-median-ratio dropped from 31:1 to 9:1, accompanied
by more internal organizations adopting MapReduce.
This shows that multiplexing many workloads (work-
loads from many organizations) help decrease bustiness.
However, the workload remains bursty.

4.3 Time series correlations

We also computed the correlation between the workload
submission time series in all three dimensions, shown in
Figure 9. The average temporal correlation between job
submit and data size is 0.21; for job submit and com-
pute time it is 0.14; for data size and compute time it
is 0.62. The correlation between data size and compute
time is by far the strongest. We can visually verify this by
the 2nd and 3rd columns for CC-e in Figure 9. This in-
dicates that MapReduce workloads remain data-centric
rather than compute-centric. Also, schedulers and load
balancers need to consider dimensions beyond number
of active jobs.
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Figure 11: Task-seconds per byte for each workload.

5 Computation Patterns

MapReduce is designed as a combined storage and com-
putation system. This section examines computation pat-
terns by task times (§ 5.1), task granularity (§ 5.2), and
common job types by both job names (§ 5.3.1) and a
multi-dimensional analysis (§ 5.3.2).

5.1 Task times
Figure 10 shows the aggregate map and reduce task du-
rations for each workload. On average, workloads spend
68% of time in map and 32% of time in reduce. For
Facebook, the fraction of time spent mapping increases
by 10% over a year. Thus, a design priority should be
to optimize map task components, such as read locality,
read bandwidth, and map output combiners.

Figure 11 shows for each workload the ratio of aggre-
gate task durations (map time + reduce time) over the
aggregate bytes (input + shuffle + output). This ratio
aims to capture the amount of computation per data in
the absence of CPU/disk/network level logs. The unit
of measurement is task-seconds per byte. Task-seconds
measures the computation time of multiple tasks, e.g.,
two tasks of 10 seconds equals 20 task-seconds. This is
a good unit of measurement if parallelization overhead is
small; it approximates the amount of computational re-
sources required by a job that is agnostic to the degree
of parallelism (e.g., X task-seconds divided into T1 tasks
equals to X task-seconds divided into T2 tasks).

Figure 11 shows that the ratio of computation per
data ranges from 1× 10−7 to 7× 10−7 task-seconds per
byte, with the FB-2010 workload having 9×10−4 task-
seconds per byte. Task-seconds per byte clearly sepa-
rates the workloads. A balanced system should be pro-
visioned specifically to service the task-seconds per byte
of a particular workload. Existing hardware benchmarks
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Figure 12: Task lengths per workload. Showing the entire
distribution (top) and top 20% of the distribution (bottom).

should also probe a given value of this metric to be more
relevant to MapReduce-like systems that combine data
movements and computation.

5.2 Task granularity

Many MapReduce workload management mechanisms
make decisions based on task-level information [41, 10,
11]. The underlying assumption is that different jobs
break down into tasks in a regular fashion, with all tasks
from all jobs being roughly “equal”. The default policy
in Hadoop MapReduce seeks to achieve this by assign-
ing one map task per HDFS block of input, and one re-
duce task per 1GB of input. Many MapReduce operators
override this policy, both intentionally and accidentally.
Therefore, it is important to empirically verify the as-
sumption of regular task granularity.

Figure 12 shows the cummulative distribution of task
durations per workload. The distribution is long tailed.
Approximately 50% of the tasks have durations of less
than a minute. The remaining tasks have durations of up
to hours. Thus, the traces do not support the assumption
that tasks are regularly sized.

Absent an enforcement of task size, any task-level
scheduling or placement decisions are likely to be sub-
optimal and prone to be intentionally undermined. For
example, an operator with a very large job could divide
her job into very large tasks. The fair scheduler ensures
a fair share of task slots. During job submission troughs,
this job would consume an increasingly large share of
the cluster. When job submission peaks again, the large
tasks would be incomplete. Absent preemptive task ter-
mination, the job with large tasks would have circum-
vented the intended fair share constraints. Furthermore,
preemptive termination of long running tasks potentially
results in large amounts of wasted work.

Task-level information does not form an inherent part
of the workload, since it describes how MapReduce ex-
ecutes the jobs given, versus what the jobs actually are.

MapReduce workload managers currently optimize exe-
cution scheduling and placement. They should also jobs
decompose into regularly sized tasks.

5.3 Common job types

There are two complementary ways of grouping jobs: (1)
by the job names submitted to MapReduce, which serves
as a qualitative proxy for proprietary code, and (2) by
the multi-dimensional job description according to per-
job data sizes, duration, and task times, which serve as a
quantitative proxy.

5.3.1 By job names

Job names are user-supplied strings recorded by MapRe-
duce. Some computation frameworks built on top of
MapReduce, such as Hive [1], Pig [3], and Oozie [2] gen-
erate the job names automatically. MapReduce does not
currently impose any structure on job names. To sim-
plify analysis, we focus on the first word of job names,
ignoring any capitalization, numbers, or other symbols.

Figure 13 shows the most frequent first words in job
names for each workload, weighted by number of jobs,
the amount of I/O, and task-time. The FB-2010 trace
does not have this information. The top figure shows that
the top handful of words account for a dominant majority
of jobs. When these names are weighted by I/O, Hive
queries such as insert and other data-centric jobs such
as data extractors dominate; when weighted by task-time,
the pattern is similar, unsurprising given the correlation
between I/O and task-time.

Figure 13 also implies that each workload consists of
only a small number of common computation types. The
reason is that job names are either automatically gen-
erated, or assigned by human operators using informal
but common conventions. Thus, job names beginning
with the same word likely performs similar computation.
The small number of computation types represent tar-
gets for static or even manual optimization. This would
greatly simplify workload management problems, such
as predicting job duration or resource use, and optimiz-
ing scheduling, placement, or task granularity.

Each workload services only a small number of
MapReduce frameworks: Hive, Pig, Oozie, or simi-
lar layers on top of MapReduce. Figure 13 shows
that for all workloads, two frameworks account for a
dominant majority of jobs. There is ongoing research
to achieve well-behaved multiplexing between different
frameworks [27]. The data here suggests that multiplex-
ing between two or three frameworks already covers the
majority of jobs in all workloads here. We believe this
observation to remain valid in the future. As new frame-
works develop, enterprise MapReduce users are likely to
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Figure 13: The first word of job names for each workload,
weighted by the number of jobs beginning with each word
(top), total I/O in bytes (middle), and map/reduce task-time
(bottom). For example, 44% of jobs in the FB-2009 workload
have a name beginning with “ad”, a further 12% begin with
“insert”; 27% of all I/O and 34% of total task-time comes from
jobs with names that begin with “from” (middle and bottom).
The FB-2010 trace did not contain job names.

converge on a revolving but small set of mature frame-
works for business critical computations.

Future work should look beyond the first word of job
names. Presently job name strings have no uniform
structure, but contain pre- or postfixes such as dates,
computation interactions, steps in multi-stage process-

ing, etc., albeit with irregular format and ordering. Im-
proved naming conventions, including UUIDs to identify
multi-job workflows, would facilitate further analysis.

5.3.2 By multi-dimensional job behavior

Another way to group jobs is by their multi-dimensional
behavior. Each job can be represented as a six-
dimensional vector described by input size, shuffle size,
output size, job duration, map task time, and reduce task
time. One way to group similarly behaving jobs is to
find clusters of vectors close to each other in the six-
dimensional space. We use a standard data clustering
algorithm, k-means [9]. K-means enables quick analysis
of a large number of data points and facilitates intuitive
labeling and interpretation of cluster centers [18, 33, 19].

We use a standard technique to choose k, the number
of job type clusters for each workload: increment k until
there is diminishing return in the decrease of intra-cluster
variance, i.e., residual variance. Our previous work [18,
19] contains additional details of this methodology.

Table 4 summarizes our k-means analysis results. We
have assigned labels using common terminology to de-
scribe the one or two data dimensions that separate job
categories within a workload. A system optimizer would
use the full numerical descriptions of cluster centroids.

We see that jobs touching <10GB of total data make
up >92% of all jobs. These jobs are capable of achiev-
ing interactive latency for analysts, i.e., durations of less
than a minute. The dominance of these jobs validate re-
search efforts to improve the scheduling time and the
interactive capability of large scale computation frame-
works [28, 31, 14].

The dominance of small jobs complicates efforts to
rein in stragglers [12], tasks that execute significantly
slower than other tasks in a job and delay job comple-
tion. Comparing the job duration and task time columns
indicate that small jobs contain only a handful of small
tasks, sometimes a single map task and a single reduce
task. Having few comparable tasks makes it difficult to
detect stragglers, and also blurs the definition of a strag-
gler. If the only task of a job runs slowly, it becomes
impossible to tell whether the task is inherently slow, or
abnormally slow. The importance of stragglers as a prob-
lem also requires re-assessment. Any stragglers would
seriously hamper jobs that have a single wave of tasks.
However, if it is the case that stragglers occur randomly
with a fixed probability, fewer tasks per job means only a
few jobs would be affected. We do not yet know whether
stragglers occur randomly.

Interestingly, map functions in some jobs aggregates
data, reduce functions in other jobs expands data, and
many jobs contain data transformations in either stages.
Such data ratios reverse the original intuition behind

9



# Jobs Input Shuffle Output Duration Map time Reduce time Label
CC-a 5525 51 MB 0 3.9 MB 39 sec 33 0 Small jobs

194 14 GB 12 GB 10 GB 35 min 65,100 15,410 Transform
31 1.2 TB 0 27 GB 2 hrs 30 min 437,615 0 Map only, huge
9 273 GB 185 GB 21 MB 4 hrs 30 min 191,351 831,181 Transform and aggregate

CC-b 21210 4.6 KB 0 4.7 KB 23 sec 11 0 Small jobs
1565 41 GB 10 GB 2.1 GB 4 min 15,837 12,392 Transform, small
165 123 GB 43 GB 13 GB 6 min 36,265 31,389 Transform, medium
31 4.7 TB 374 MB 24 MB 9 min 876,786 705 Aggregate and transform
3 600 GB 1.6 GB 550 MB 6 hrs 45 min 3,092,977 230,976 Aggregate

CC-c 19975 5.7 GB 3.0 GB 200 MB 4 min 10,933 6,586 Small jobs
477 1.0 TB 4.2 TB 920 GB 47 min 1,927,432 462,070 Transform, light reduce
246 887 GB 57 GB 22 MB 4 hrs 14 min 569,391 158,930 Aggregate
197 1.1 TB 3.7 TB 3.7 TB 53 min 1,895,403 886,347 Transform, heavy reduce
105 32 GB 37 GB 2.4 GB 2 hrs 11 min 14,865,972 36,9846 Aggregate, large
23 3.7 TB 562 GB 37 GB 17 hrs 9,779,062 14,989,871 Long jobs
7 220 TB 18 GB 2.8 GB 5 hrs 15 min 66,839,710 758,957 Aggregate, huge

CC-d 12736 3.1 GB 753 MB 231 MB 67 sec 7,376 5,085 Small jobs
214 633 GB 2.9 TB 332 GB 11 min 544,433 352,692 Expand and aggregate
162 5.3 GB 6.1 TB 33 GB 23 min 2,011,911 910,673 Transform and aggregate
128 1.0 TB 6.2 TB 6.7 TB 20 min 847,286 900,395 Expand and Transform
43 17 GB 4.0 GB 1.7 GB 36 min 6,259,747 7,067 Aggregate

CC-e 10243 8.1 MB 0 970 KB 18 sec 15 0 Small jobs
452 166 GB 180 GB 118 GB 31 min 35,606 38,194 Transform, large
68 543 GB 502 GB 166 GB 2 hrs 115,077 108,745 Transform, very large
20 3.0 TB 0 200 B 5 min 137,077 0 Map only summary
7 6.7 TB 2.3 GB 6.7 TB 3 hrs 47 min 335,807 0 Map only transform

FB-2009 1081918 21 KB 0 871 KB 32 s 20 0 Small jobs
37038 381 KB 0 1.9 GB 21 min 6,079 0 Load data, fast
2070 10 KB 0 4.2 GB 1 hr 50 min 26,321 0 Load data, slow
602 405 KB 0 447 GB 1 hr 10 min 66,657 0 Load data, large
180 446 KB 0 1.1 TB 5 hrs 5 min 125,662 0 Load data, huge

6035 230 GB 8.8 GB 491 MB 15 min 104,338 66,760 Aggregate, fast
379 1.9 TB 502 MB 2.6 GB 30 min 348,942 76,736 Aggregate and expand
159 418 GB 2.5 TB 45 GB 1 hr 25 min 1,076,089 974,395 Expand and aggregate
793 255 GB 788 GB 1.6 GB 35 min 384,562 338,050 Data transform
19 7.6 TB 51 GB 104 KB 55 min 4,843,452 853,911 Data summary

FB-2010 1145663 6.9 MB 600 B 60 KB 1 min 48 34 Small jobs
7911 50 GB 0 61 GB 8 hrs 60,664 0 Map only transform, 8 hrs
779 3.6 TB 0 4.4 TB 45 min 3,081,710 0 Map only transform, 45 min
670 2.1 TB 0 2.7 GB 1 hr 20 min 9,457,592 0 Map only aggregate
104 35 GB 0 3.5 GB 3 days 198,436 0 Map only transform, 3 days

11491 1.5 TB 30 GB 2.2 GB 30 min 1,112,765 387,191 Aggregate
1876 711 GB 2.6 TB 860 GB 2 hrs 1,618,792 2,056,439 Transform, 2 hrs
454 9.0 TB 1.5 TB 1.2 TB 1 hr 1,795,682 818,344 Aggregate and transform
169 2.7 TB 12 TB 260 GB 2 hrs 7 min 2,862,726 3,091,678 Expand and aggregate
67 630 GB 1.2 TB 140 GB 18 hrs 1,545,220 18,144,174 Transform, 18 hrs

Table 4: Job types in each workload as identified by k-means clustering, with cluster sizes, centers, and labels. Map and reduce
time are in task-seconds, i.e., a job with 2 map tasks of 10 seconds each has map time of 20 task-seconds. Note that the small jobs
dominate all workloads.

map functions as expansions, i.e., “maps”, and reduction
functions as aggregates, i.e., “reduces” [23].

Also, map-only jobs appear in all but two workloads.
They form 7% to 77% of all bytes, and 4% to 42% of
all task times in their respective workloads. Some are
Oozie launcher jobs and others are maintenance jobs that
operate on very little data. Compared with other jobs,
map-only jobs benefit less from datacenter networks op-
timized for shuffle patterns [7, 8, 25, 20].

The FB-2009 and FB-2010 workloads in Table 4
show that job types at Facebook changed significantly
over one year. The small jobs remain, and several kinds
of map-only jobs remain. However, the job profiles
changed in several dimensions. Thus, for Facebook, any
policy parameters need to be periodically revisited.

Future work should seek to perform k-means analy-
sis for multiple workloads together, instead of for each

workload separately. Such combined analysis would re-
veal what are the common job categories across work-
loads. This combined analysis requires normalizing each
workload by its “size”. Given that each workload con-
tain different number of jobs, and have different ranges
in each of the 6 dimensions, it is not yet clear how this
“super k-means” analysis would proceed. A further in-
novation in analysis methodology awaits.

6 Data Analysis Trends

The non-trivial workloads we analyzed and our conver-
sations with Facebook and Cloudera provide the oppor-
tunity to speculate on MapReduce-related data analy-
sis trends, subject to verification as more comprehen-
sive data becomes available. Overall, the trends reflect
a desire for timely, high quality insights, extracted from
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growing and complex data sets, and using as little tech-
nical expertise as possible.
Increasing semi-streaming analysis. Streaming analy-
sis describes continuous computation processes, which
often updates some time-aggregation metric [22]. For
MapReduce, a common substitute for truly streaming
analysis is to setup automated jobs that regularly oper-
ates on recent data. Since “recent” data is intention-
ally smaller than “historical” data, this type of semi-
streaming analysis partially accounts for the large num-
ber of small jobs in all workloads.
Increasing interactive analysis. Another source of
small jobs is interactive large-scale data analysis. Small
jobs are capable of low latency, compared with larger
jobs. Evidence suggesting interactive analysis include
(1) Diurnal workload patterns, identified by both visual
inspection and Fourier analysis, e.g., in jobs submitted
per hour for CC-c, FB-2009, and FB-2010; (2) Presence
across all workloads of frameworks such as Hive and Pig,
one of whose design goals was ease of use by human an-
alysts familiar with SQL. Not all small jobs in Hive and
Pig would be interactively generated. However, over half
of small jobs remain after we remove jobs whose names
contain time stamps (semi-streaming analysis) and jobs
submitted in the early morning (outside work hours).

At Facebook, a common use case is interactive data
exploration using ad-hoc queries [17, 40]. Several recent
research efforts at web search companies also focus on
achieving interactive processing latency [31, 28].
Frameworks on top of MapReduce. All workloads in-
clude many jobs from Hive, Pig, or Oozie. Frameworks
like these allow organizations to devote intellectual re-
sources to understanding the data being processed, ver-
sus learning how to process the data using native map
and reduce functions. Thus, these frameworks are likely
to see increased adoption, both for established users such
as Facebook, and especially for emerging users in media,
retail, finance, manufacturing, and other industries.
Storage capacity as a constraint. The comparison be-
tween FB-2009 and FB-2010 workloads reveals orders
of magnitude increase in per-job data sizes and the ag-
gregate active data set touched. Such growth compels
the heavy use of data compression and RAID-style error
correction codes, which are more efficient with regard
to storage capacity versus HDFS replication [15, 37].
As data generation and collection capabilities improve
across industries, more MapReduce use cases would
need to address the storage capacity challenge.

7 Summary and Conclusions

The analysis in this paper has several repercussions: (1)
MapReduce has evolved to the point where performance

claims should be qualified with the underlying work-
load assumptions, e.g., by replaying a suite of workloads.
(2) System engineers should regularly re-assess designs
priorities subject to changing use cases. Prerequisites
to these efforts are workload replay tools and a public
workload repository, so that engineers can share insights
across different enterprise MapReduce deployments.

We have developed and deployed SWIM, a Statis-
tical Workload Injector for MapReduce (www.eecs.
berkeley.edu/~ychen2/SWIM.html). This is a set of
workload replay tools, under New BSD License, that can
pre-populate HDFS using synthetic data, scaled to clus-
ter size, and replay the workload using synthetic MapRe-
duce jobs. The workload replay methodology is further
discussed in [18]. The SWIM repository already includes
the FB-2009 and FB-2010 workloads. Cloudera has al-
lowed us to contact the end customers directly and seek
permission to make public their traces. We hope the
repository can help others pursue the future work oppor-
tunities identified in the paper, and contribute to a sci-
entific approach to designing large-scale data processing
systems such as MapReduce.

7.1 Future work

There are many future opportunities for MapReduce
workload characterization.
Analyze more workloads over longer time periods.
Doing so allows us to improve the quality and generality
of the derived design insights.
Analyze additional statistics. There always exists some
additional analysis that can inform specific studies. In
particular, the time between job submit and the first task
being launched would reflect additional queuing bottle-
necks; analysis of job submission patterns separated by
submitters would distinguish human versus automated
analysis; detailed accounting of task placement would
reveal opportunities for improving data locality.
Automate analysis and monitoring tools. Enterprise
MapReduce monitoring tools [21] should perform work-
load analysis automatically, present graphical results in a
dashboard, ship only the anonymized/aggregated metrics
workload comparison offsite, and improve tracing capa-
bility for Hive, Pig, HBase, and other such frameworks.
Create a MapReduce workload taxonomy. This would
be possible once we have a large collection of insights
from companies of different sizes and industries. Such
a taxonomy would help identifying design priorities for
future MapReduce-style systems. For the workloads ana-
lyzed here, the similarities we found could define them as
a common class, while the differences could help distin-
guish sub-classes. Such a taxonomy requires more com-
prehensive data beyond what we analyzed in this paper.
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We again invite the community to contribute additional
workloads insights.
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